PGA33X6 Quick Reference

Introduction

The PGA33X6 allows us to store one of certain Boolean functions on four Boolean parameters $f_{3}: B^{4} \rightarrow B$ where one of the parameters is tied to an embedded $S R$ flip-flop, as well as two other functions f_{1}, f_{2} with further limitations. Note that any f_{3} dependent on only 3 parameters can be represented in the PGA33X6.

To begin programming the PGA33X6 to represent a function, we need to first express the output of the function as a sum of products of the parameters, where each term of the product is an input parameter or its complement. Each of the terms of the sum are a product, and we call them minterms. We call such an expression the canonical normal form (CNF).

How many minterms do we need?

The CNF of a function with n parameters has 2^{n} minterms. Nevertheless, we can use Karnaugh maps to minimize the number of minterms, and we find that 4 minterms and hence 4 AND gates represent any f such that $f\left(i_{0}, i_{1}, i_{2}\right)=0$. We actually need 8 AND gates to represent any f such that $f\left(i_{0}, i_{1}, i_{2}, i_{3}\right)=0$, hence we can only represent certain functions with 4 parameters.

Say we have defined f_{3} and possibly f_{1}. If there are n unique minterms that together make up the definition of f_{3} and f_{1}, the PGA33X6 allows us to define an f_{2} as a sum on up to $6-n$ distinct minterms, as well as any of the n minterms used for f_{3} and f_{1}.

Other limitations of the PGA33X6

The PGA33X6 makes the following convention: an AND gate with no input outputs 0 , and an OR gate with no input outputs 0 . Hence to represent the function $f\left(i_{0}, i_{1}, i_{2}\right)=0$ for any i_{0}, i_{1}, i_{2} is easy: connect no input to the OR gates. However, to represent $f\left(i_{0}, i_{1}, i_{2}\right)=1$, we need at least 2 minterms- $i+i^{\prime}$ for any input i.

Notation

We extend the Boolean algebra $B=(\{0,1\},+, \cdot)$ to $B_{\varnothing}=(\{0, \varnothing, 1\},+, \cdot)$ so that

$a+b$	0	\varnothing	1					
0	0	0	1					
\varnothing	0	0	1					
1	1	1	1	\quad	$a b$	0	\varnothing	1
:---:	:---:	:---:	:---:					
0	0	0	0					
\varnothing	0	1	1					
1	0	1	1	\quad	a	a^{\prime}		
:---:	:---:							
0	1							
\varnothing	\varnothing							
1	0							

In addition, we write $\{k\}_{k=a}^{b}=\{k \in \mathbb{Z}: a \leq k \leq n\}$.

Definitions

Inputs. From the top pin to the bottom, we denote the state of the inputs at step t with $i_{(0, t)}, i_{(1, t)}, i_{(2, t)}$. Then, denote the state data of the SR flip-flop at step
t with $i_{(3, t)}$. Input values. For all $t \in\{t\}_{t=0}^{\infty}$ and $k \in\{k\}_{k=0}^{3}$,

$$
\begin{equation*}
i_{(k, t)} \in\{0,1\} . \tag{2}
\end{equation*}
$$

Outputs. From the top pin to the bottom, we denote the state of the outputs at step t with $O_{(0, t)}, O_{(1, t)}, O_{(2, t)}$, and the input s to the SR flip-flop at step t with $o_{(3, t)}$. Note that $o_{(1, t)}$ is also the input r to the SR flip-flop, and that the outputs of the OR gates are, from top to bottom, $O_{(3, t)}, o_{(1, t)}, O_{(2, t)}$. Output values. For all $t \in\{t\}_{t=0}^{\infty}$ and $k \in\{k\}_{k=0}^{3}$,

$$
\begin{equation*}
o_{(k, t)} \in\{0,1\} . \tag{3}
\end{equation*}
$$

AND Inputs. Let us denote using $g_{(k, n)}$ whether it is $i_{(k, t)}$ or $i_{(k, t)}^{\prime}$ or neither of the two that is connected to the nth AND gate. For all $k \in\{k\}_{k=0}^{3}$ and $n \in\{n\}_{n=0}^{5}$,

$$
\begin{equation*}
g_{(k, n)} \in\{0, \varnothing, 1\} . \tag{4}
\end{equation*}
$$

OR Inputs. Let us denote using $h_{(k, n)}$ whether the output of the nth AND gate is connected to the k th OR gate. For all $k \in\{k\}_{k=1}^{3}$ and $n \in\{n\}_{n=0}^{5}$,

$$
\begin{equation*}
h_{(n, k)} \in\{0,1\} . \tag{5}
\end{equation*}
$$

SR flip-flop selector. Finally, there is a programmable bit b that determines if $o_{(0, t)}$ takes its values from $i_{(3, t)}$ or from $o_{(3, t)}$.

$$
\begin{equation*}
b \in\{0,1\} \tag{6}
\end{equation*}
$$

Operation

Say we have programmed/set all $g_{(k, n)}$ and $h_{(n, k)}$ and b. In addition, it is now step t and we know the input values $i_{(k, t)}$. We want to know $o_{(k, t)}$ and $i_{(3, t+1)}$.

Minterms. Then for all $t \in\{t\}_{t=0}^{\infty}$ and $n \in\{n\}_{n=0}^{5}$, the output of the nth AND gate at step t is the modified minterm

$$
\begin{equation*}
w_{t, n}=\left(\sum_{k=0}^{3} g_{(k, n)}+g_{(k, n)}^{\prime}\right)\left(\prod_{k=0}^{3} i_{(k, t)} g_{(k, n)}+i_{(k, t)}^{\prime} g_{(k, n)}^{\prime}\right) . \tag{7}
\end{equation*}
$$

Outputs. Still at step t, for all $k \in\{k\}_{k=1}^{3}$, the output of k th OR gate is

$$
\begin{equation*}
o_{(k, t)}=\sum_{n=0}^{5} w_{(t, n)} h_{(n, 1)} \tag{8}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
o_{(0, t)}=b^{\prime} o_{(3, t)}+b i_{(k, t)} . \tag{9}
\end{equation*}
$$

SR Flip-flop. Finally, the output of the SR flip-flop for the next step $t+1$ is set depending on $\mathrm{s}=o_{(3, t)}, \mathrm{r}=o_{(1, t)}$, data $=i_{(3, t)}$.

$$
\begin{equation*}
i_{(3, t+1)}=o_{(3, t)}+i_{(3, t)} o_{(1, t)}^{\prime} \tag{10}
\end{equation*}
$$

