
PGA33X6 Quick Reference

Introduction

The PGA33X6 allows us to store one of certain Boolean functions on four Boolean

parameters f3 : B4 → B where one of the parameters is tied to an embedded SR

flip-flop, as well as two other functions f1, f2 with further limitations. Note that any

f3 dependent on only 3 parameters can be represented in the PGA33X6.

To begin programming the PGA33X6 to represent a function, we need to first ex-

press the output of the function as a sum of products of the parameters, where each

term of the product is an input parameter or its complement. Each of the terms of

the sum are a product, and we call them minterms. We call such an expression the

canonical normal form (CNF).

How many minterms do we need?

The CNF of a function with n parameters has 2n minterms. Nevertheless, we

can use Karnaugh maps to minimize the number of minterms, and we find that 4

minterms and hence 4 AND gates represent any f such that f (i0, i1, i2) = o. We

actually need 8 AND gates to represent any f such that f (i0, i1, i2, i3) = o, hence we

can only represent certain functions with 4 parameters.

Say we have defined f3 and possibly f1. If there are n unique minterms that to-

gether make up the definition of f3 and f1, the PGA33X6 allows us to define an f2 as

a sum on up to 6− n distinct minterms, as well as any of the n minterms used for f3
and f1.

Other limitations of the PGA33X6

The PGA33X6 makes the following convention: an AND gate with no input out-

puts 0, and an OR gate with no input outputs 0. Hence to represent the function

f (i0, i1, i2) = 0 for any i0, i1, i2 is easy: connect no input to the OR gates. However,

to represent f (i0, i1, i2) = 1, we need at least 2 minterms—i + i ′ for any input i .

Notation

We extend the Boolean algebra B = ({0, 1},+, ·) to B∅ = ({0,∅, 1},+, ·) so

that

a + b 0 ∅ 1

0 0 0 1

∅ 0 0 1

1 1 1 1

ab 0 ∅ 1

0 0 0 0

∅ 0 1 1

1 0 1 1

a a′

0 1

∅ ∅
1 0

. (1)

In addition, we write {k}bk=a = {k ∈ Z : a ≤ k ≤ n}.

Definitions

Inputs. From the top pin to the bottom, we denote the state of the inputs at

step t with i(0,t), i(1,t), i(2,t). Then, denote the state data of the SR flip-flop at step

t with i(3,t). Input values. For all t ∈ {t}∞t=0 and k ∈ {k}3k=0,

i(k,t) ∈ {0, 1}. (2)

Outputs. From the top pin to the bottom, we denote the state of the outputs

at step t with o(0,t), o(1,t), o(2,t), and the input s to the SR flip-flop at step t with

o(3,t). Note that o(1,t) is also the input r to the SR flip-flop, and that the outputs

of the OR gates are, from top to bottom, o(3,t), o(1,t), o(2,t). Output values. For

all t ∈ {t}∞t=0 and k ∈ {k}3k=0,

o(k,t) ∈ {0, 1}. (3)

AND Inputs. Let us denote using g(k,n) whether it is i(k,t) or i ′(k,t) or neither of

the two that is connected to the nth AND gate. For all k ∈ {k}3k=0 and n ∈ {n}5n=0,

g(k,n) ∈ {0,∅, 1}. (4)

OR Inputs. Let us denote using h(k,n) whether the output of the nth AND gate

is connected to the kth OR gate. For all k ∈ {k}3k=1 and n ∈ {n}5n=0,

h(n,k) ∈ {0, 1}. (5)

SR flip-flop selector. Finally, there is a programmable bit b that determines if

o(0,t) takes its values from i(3,t) or from o(3,t).

b ∈ {0, 1}. (6)

Operation

Say we have programmed/set all g(k,n) and h(n,k) and b. In addition, it is now

step t and we know the input values i(k,t). We want to know o(k,t) and i(3,t+1).

Minterms. Then for all t ∈ {t}∞t=0 and n ∈ {n}5n=0, the output of the nth AND

gate at step t is the modified minterm

wt,n =

(
3∑
k=0

g(k,n) + g′(k,n)

)(
3∏
k=0

i(k,t)g(k,n) + i ′(k,t)g
′
(k,n)

)
. (7)

Outputs. Still at step t, for all k ∈ {k}3k=1, the output of kth OR gate is

o(k,t) =

5∑
n=0

w(t,n)h(n,1). (8)

In addition,

o(0,t) = b′o(3,t) + bi(k,t). (9)

SR Flip-flop. Finally, the output of the SR flip-flop for the next step t + 1 is set

depending on s = o(3,t), r = o(1,t), data = i(3,t).

i(3,t+1) = o(3,t) + i(3,t)o
′
(1,t). (10)


