PGA33X6 Quick Reference

Introduction

The PGA33X6 allows us to store one of certain Boolean functions on four Boolean
parameters f3 : B* — B where one of the parameters is tied to an embedded SR
flip-flop, as well as two other functions fi, f» with further limitations. Note that any
f3 dependent on only 3 parameters can be represented in the PGA33X6.

To begin programming the PGA33X6 to represent a function, we need to first ex-
press the output of the function as a sum of products of the parameters, where each
term of the product is an input parameter or its complement. Each of the terms of
the sum are a product, and we call them minterms. We call such an expression the
canonical normal form (CNF).

How many minterms do we need?

The CNF of a function with n parameters has 2" minterms. Nevertheless, we
can use Karnaugh maps to minimize the number of minterms, and we find that 4
minterms and hence 4 AND gates represent any f such that f(ip, i1, k) = 0. We
actually need 8 AND gates to represent any f such that f(fy, i1, >, 3) = 0, hence we
can only represent certain functions with 4 parameters.

Say we have defined f3 and possibly f;. If there are n unique minterms that to-
gether make up the definition of f3 and f;, the PGA33X6 allows us to define an £, as
a sum on up to 6 — n distinct minterms, as well as any of the n minterms used for f3
and fi.

Other limitations of the PGA33X6

The PGA33X6 makes the following convention: an AND gate with no input out-
puts 0, and an OR gate with no input outputs 0. Hence to represent the function
f (ig, i1, o) = 0 for any iy, i1, I is easy: connect no input to the OR gates. However,
to represent f (g, i1, i) = 1, we need at least 2 minterms—i + i’ for any input /.

Notation

We extend the Boolean algebra B = ({0,1},+,-) to By = ({0,9,1},+,) so
that

a+b|0 @ 1 ab|0 @ 1 ald
0 0O 0 1 0]0 0 O 0|1 (1)
%] 0O 0 1 g0 1 1 g | o
1 1 1 1 1({0 1 1 110

In addition, we write {k}fza ={keZ: a<k<n}
Definitions

Inputs. From the top pin to the bottom, we denote the state of the inputs at
step t with ig,¢), i(1,t), l(2,t)- Then, denote the state data of the SR flip-flop at step

t with 3. Input values. For all t € {t};°, and k € {k}7_,,

/(k,t) € {O, 1} (2)

Outputs. From the top pin to the bottom, we denote the state of the outputs
at step t with o(g,+), 0(1,+), O0(2,+), and the input s to the SR flip-flop at step ¢ with
0O(a,t)- Note that o 1) is also the input r to the SR flip-flop, and that the outputs
of the OR gates are, from top to bottom, o), 0(1,t), 0(2,+)- Output values. For
all t € {t}32, and k € {k}i_,,

O(k,t) € {0,1}. (3)
AND Inputs. Let us denote using g(x,, whether it is i) or i(/k,t) or neither of
the two that is connected to the nth AND gate. For all k € {k};_, and n € {n}>_,,

9k € 10,2, 1} (4)
OR Inputs. Let us denote using h »y whether the output of the nth AND gate
is connected to the kth OR gate. For all k € {k}i:l and n € {n};r;zo,

h(n,k) € {0, 1} (5)
SR flip-flop selector. Finally, there is a programmable bit b that determines if
0(0,+) takes its values from i3 +) or from oz ¢).

be {0, 1}. (6)

Operation
Say we have programmed/set all g(x) and h,) and b. In addition, it is now
step t and we know the input values ji »y. We want to know oy ;) and i(3,t41).

Minterms. Then for all t € {t};2, and n € {n}izo, the output of the nth AND
gate at step t is the modified minterm

3 3
Wi = (Z 9(k.n) T+ gfk,n)> (H Ik,)9(k,n) + /(Ik,t)gék,n)> : (7)
k=0 k=0
Outputs. Still at step ¢, for all k € {k}izl, the output of kth OR gate is
5
O(k,t) = Z W(e,mNen,1)- (8)
n=0
In addition,
0(0,t) = bIO(3yt) + bll(k't). (9)

SR Flip-flop. Finally, the output of the SR flip-flop for the next step t+ 1 is set
depending on s = 0(3,t), T = 0O(1,¢), data = i3 ¢).

i3,641) = 0@3,t) + (3.0)0(1.1)- (10)

